Lesson 6: Steam

How Do We Make Electricity from Steam?

Teaching Sustainability in High Schools:
Subject Supplement

Developed by:

Funded by:

As part of the:
Lesson 6: Steam

How Do We Make Electricity from Steam?

According to an estimate by the Centre for International Economics, Australia has enough geothermal energy to contribute electricity for 450 years. *Sydney Morning Herald, April 2007*

Educational Aim

The aim of this lesson is to describe the key components of steam turbines and electric generators, and the processes used by these technologies to generate electricity from steam.

Key Words for Searching Online

Steam turbines, nozzle blade, rotor blade, nozzles, impulse turbine, reaction turbine, electric generators, electromagnetic induction, alternator

Key Learning Points

1. Making electricity from steam is generally a three step process, involving:
 1) Converting water to high pressure steam
 2) Using the high pressure steam in a steam turbine to rotate the turbine shaft
 3) Using the rotating turbine shaft in an electric generator to generate electricity
 In most cases, the used steam is converted back to water and returned to the source.
2. Water is converted to high pressure steam using either the heat from burning fuels, geothermal energy or the heat from atomic fission.
3. Steam turbines convert high pressure steam to mechanical rotation in a process which involves steam at high-pressure (high pressure potential energy) and with some velocity (some linear kinetic energy) entering the turbine and being sucked through sets of different turbine blades, eventually exiting at (normal) atmospheric pressure. During this process:
 1) The steam first encounters a set of stationary blades, called nozzles, that guide the steam towards the next set of blades.
 2) The steam then encounters a set of moving blades, called rotor blades, which are connected to the turbine shaft. When the rotor blades move, the turbine shaft rotates (rotational kinetic energy).
 Thus the steam turbines convert the combined input pressure potential energy and linear kinetic energy of steam to output rotational kinetic energy of the turbine shaft.
4. Each pair of nozzles and rotor blades is called a stage. Some turbines use multiple stages in succession to convert as much steam energy into shaft energy as is economical.

2 Geothermal energy involves finding vast blocks of ‘hot rocks’ with fracture systems that could generate electricity through water being injected, circulated through the fractures, and being returned to the surface as steam.
5. The energy conversion as the steam flows through the blades depends on whether the turbine is an impulse turbine or a reaction turbine. The difference between these two types of turbines lies in their blade configurations:

1) In an impulse turbine, the force that moves the blades is a result of the steam striking the blades. This force is known as an impulse. As the steam passes through the nozzle, all of its pressure potential energy is converted to linear kinetic energy. Then as the steam passes through the rotor blades, all of its linear kinetic energy is converted to rotational kinetic energy.

2) In a reaction turbine, the force that moves the blades is a result of the blades changing the direction of the steam's flow. This force is known as a reaction force. As the steam passes through the nozzle, some of its pressure potential energy is converted to linear kinetic energy. Then as the steam passes through the rotor blades, all of its remaining pressure potential energy and all of its linear kinetic energy is converted to rotational kinetic energy.

6. An electric generator is a device that converts the rotating turbine shaft’s kinetic energy into electricity, or an electric current. The electricity then generates a voltage across an electrical load.

7. An electric generator works under the principle of electromagnetic induction, which means that if an electrical conductor, such as a wire, is moved through a magnetic field, then an electric current will be generated in the conductor.

8. The principle of electromagnetic induction is applied in an alternating current (AC) electric generator, or alternator.
Brief Background Information

Making electricity from steam is generally a three step process, where water is converted to high pressure steam, then the high pressure steam is converted to mechanical rotation of a turbine shaft, and the rotating turbine shaft then drives an electric generator.

Step 1: Water to Steam

In steam electric power plants, water is usually converted to high pressure steam using one of the following options:

- A *boiler*, which creates heat energy by burning fuels such as coal, oil, natural gas, wood or municipal waste as shown in Figure 6.1.3

- *Geothermal energy*, which is the heat energy in the ground near the Earth's core, as shown in Figure 6.2. Geothermal energy exploration involves finding blocks of underground radioactive ‘hot rocks’ which contain fractures through which water can pass. The proposition is that these support electricity generation by water being injected, circulated through the fractures, and then returned to surface as steam.

South Australia has been described as 'Australia's hot rock haven'. According to an estimate by the Centre for International Economics, Australia has enough geothermal energy to contribute electricity for 450 years.4 A geothermal power plant is already generating 80 kW of electricity at Birdsville, in southwest Queensland.5

- Atomic fission, which creates heat energy by splitting large atoms in to smaller atoms (see Figure 6.3).6

Fundamentals

The pressure of a gas in an enclosure varies with temperature (if the volume remains the same):

- pressure \propto temperature

The heat energy is absorbed by the gas particles, which then become more active and thus have more frequent and forceful collisions with each other and the enclosure's walls. These collisions cause pressure.

Figure 6.1. A steam electric power plant powered by a boiler

Source: TXU Energy

Figure 6.2. A steam electric power plant powered by geothermal energy

Source: US Department of Energy

Figure 6.3. A steam electric power plant powered by nuclear fission

Source: Clean and Safe Energy Coalition

2. Convert High Pressure Steam to Mechanical Rotation

Steam Turbines\(^{10}\) convert high pressure steam to mechanical rotation. Their power output can range from 0.5 megawatts to over 1300 megawatts.\(^{11}\) Steam turbines convert 10-40 percent of the combined input pressure potential energy and linear kinetic energy of steam to output rotational kinetic energy of the turbine shaft\(^{12}\) in the following process:

- High-pressure steam (high pressure potential energy) and with some velocity (linear kinetic energy) enters the turbine and is sucked through sets of different turbine blades, exiting at atmospheric pressure.
- The steam first encounters a set of stationary blades, which are also converging nozzles, that guide the steam towards the next set of blades.
- The steam then encounters a set of moving blades, called rotor blades, which are connected to the turbine shaft such that when the rotor blades move, the turbine shaft rotates (rotational kinetic energy).
- Each pair of nozzles and rotor blades is called a stage. Some turbines use multiple stages in succession to convert as much steam energy into shaft energy as is economical. The energy conversion as the steam flows through the blades depends on whether the turbine is an impulse turbine or a reaction turbine. The difference between these two types of turbines lies in their blade configurations. Each blade configuration uses a different type of primary force (impulse or reaction) to move the rotor blades, but also uses the other type of force (reaction or impulse) secondarily. The two can also be combined into an impulse-reaction configuration, relying heavily on both impulse and reaction

Fundamentals

Kinetic energy is a form of energy in moving objects. Kinetic energy can be either linear or rotational:

- linear kinetic energy \(\propto \) linear velocity\(^2\)
- rotational kinetic energy \(\propto \) rotational velocity\(^2\)

Potential energy is a form of stored energy in objects that can be converted to kinetic energy. Potential energy results in gases that are between regions of different pressure:

- pressure potential energy \(\propto \) pressure difference between regions

forces to move the rotor blades.

Impulse Turbines

The energy conversion for an impulse turbine is shown in Figure 6.4. In the impulse blade configuration (see Figure 6.5(a) and Figure 6.5(b)), there is high pressure at the nozzle’s inlet, atmospheric pressure between the nozzle and rotor blade, and atmospheric pressure at the rotor blade’s outlet. A nozzle is usually at the outlet of a guiding tube and rotor blades are connected to the rotor, which is also connected to the turbine’s shaft. Since the nozzle’s inlet pressure is higher than its outlet pressure, the steam expands through the nozzle – most of the steam’s pressure potential energy is converted to linear kinetic energy. After flowing through the nozzle, steam then strikes the rotor blades and applies a force. This force results in an impulse on the rotor blades, transferring most of the steam’s linear kinetic energy to the rotor blades’ linear kinetic energy and hence the turbine shaft’s rotational kinetic energy.

Since a rotor blade’s inlet and outlet are both at atmospheric pressure, the steam does not expand and thus rotor blades are not designed to converge nor diverge (see Figure 6.5(c)). After flowing through the rotor blades, the steam is finally exhausted at low pressure and low velocity. A commonly recognised application of the impulse configuration is the Pelton wheel (see Figure 6.5(d)).

![Figure 6.4. Energy conversion in an impulse turbine.](image-url)
Reaction Turbines

The energy conversion for a reaction turbine is shown in Figure 6.6. In the reaction blade configuration (see Figure 6.7(a) and Figure 6.7(b)), there is high pressure at the nozzle’s inlet, moderate pressure between the nozzle and rotor blade, and atmospheric pressure at the rotor blade’s outlet. Nozzles are usually connected to the turbine’s casing and rotor blades are connected to the rotor, which is also connected to the turbine’s shaft. Since the nozzle’s inlet pressure is higher than its outlet pressure, the steam expands through the nozzle – some of the steam’s pressure potential energy is converted to linear kinetic energy. After flowing through the nozzle, steam then flows through the rotor blades, where it is forced to change direction. This force on the steam results in a reaction force on the rotor blades, transferring most of the steam’s pressure potential energy and linear kinetic energy to the rotor blades’ linear kinetic energy and hence the turbine shaft’s rotational kinetic energy.

Figure 6.5. (a) Single-nozzle impulse turbine; (b) four-nozzle impulse turbine; (c) impulse nozzle blade configuration; (d) Pelton wheel

Source: (a) US Department of Energy;13 (b) Integrated Publishing (n.d.);14 (c) Adapted from Beardmore, R (2006)15 by TNEP; (d) Adapted from The Free Dictionary16 by TNEP

Figure 6.6. Energy conversion in a reaction turbine

Figure 6.7. (a) Blades of a single-stage reaction turbine; (b) Blades of a two-stage reaction turbine; (c) reaction nozzle blade configuration; (d) Catherine wheel

Source: (a) & (b) Global Security (n.d.); (c) Adapted from Beardmore, R. (2006); (d) Adapted from The Free Dictionary

Since a rotor blade’s inlet pressure is higher than its outlet pressure, the steam expands and thus rotor blades are designed as converging nozzles in the same shape as the nozzle blade (see Figure 6.7(c)). After flowing through the rotor blades, the steam is finally exhausted at low pressure and low velocity. A commonly recognised application of the impulse configuration is the Catherine wheel (see Figure 6.7(d)).

Impulse-Reaction Turbines

In the impulse-reaction blade configuration, the rotor blades are usually designed like an impulse blade at the root and like a reaction blade at the tip (see Figure 6.8).

![Figure 2.8. Impulse-reaction turbine blade](source: Global Security)

Electric Generator

An electric generator is a device that converts kinetic energy into electricity, or an electric current. The electricity then generates a voltage across an electrical load. An electric generator works under the principle of electromagnetic induction, which means that if an electrical conductor, such as a wire, is moved through a magnetic field, then an electric current will be generated in the conductor.

Fundamentals

A positive electrical current (which is assumed in the right hand rule) flows from positive voltage to negative voltage. A negative electrical current flows from negative voltage to positive voltage.

The magnitude of the current in the wire is given by Equation 6.1 and Table 6.1; the direction of the current is given by the right hand rule (see Figure 6.9); and the magnitude of the voltage across the load is given by Equation 6.2 and Table 6.2.

20 The blade in the image is for an aircraft’s gas turbine rather than for a steam turbine, but the image serves to demonstrate the impulse-reaction blade configuration.

Table 6.1: Symbol Nomenclature for Equation 6.1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Electrical current generated in wire</td>
<td>Ampere (A)</td>
</tr>
<tr>
<td>F</td>
<td>Force acting on current-carrying wire</td>
<td>Newton (N)</td>
</tr>
<tr>
<td>B</td>
<td>Magnetic field strength acting on wire</td>
<td>Tesla (T)</td>
</tr>
<tr>
<td>l</td>
<td>Length of wire</td>
<td>metres (m)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Angle between the force and magnetic field strength</td>
<td>Degree (°) or Radian (rad)</td>
</tr>
</tbody>
</table>

Equation 6.1. Electric current generated in a conducting wire that is moved through a magnetic field

\[I = \frac{F}{BI \sin \theta} \]

Figure 2.9. Right hand rule

Source: Adapted from Integrated Publishing[[22](http://www.tpub.com/content/neets/14182/css/14182_71.htm)]

Table 6.2: Symbol Nomenclature for Equation 6.2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Voltage generated across load</td>
<td>Volts (V)</td>
</tr>
<tr>
<td>I</td>
<td>Electrical current generated in wire</td>
<td>Ampere (A)</td>
</tr>
<tr>
<td>Z</td>
<td>Electrical impedance of load</td>
<td>Ohm (Ω)</td>
</tr>
</tbody>
</table>

Equation 6.2. Voltage generated across an electrical load due to an electric current

\[V = IZ \]

AC Generator

The way the principle of electromagnetic induction is applied in a simple AC electric generator, or *alternator*, is shown in Table 6.3. The magnetic field, which acts from North to South, is provided by two magnets. The force to move the wire is provided by the rotating output shaft of...
the steam turbine or some other device. The general shape of the current graph and voltage graph are almost the same – the only difference is that one graph is usually stretched vertically compared to the other graph. One of the easiest ways to understand Table 6.3 is to step through each entry while:

1. using the right hand rule to match the directions of the magnetic field, force and electric current; and

2. considering how much of the force is acting perpendicular to the magnetic field.

Alternatively, see the online animations by Wolfe, J. (n.d.)\(^23\) and Wisconsin Valley Improvement Company.\(^24\) These resources also have animations for DC generators.

Most practical electric generators use several loops of wire in a coil, rather than just one loop of wire. Some electric generators rotate the magnets while holding the wire stationary.

Table 6.3: Operation of a simple AC electric generator

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Electric Current and Voltage</th>
<th>Comments</th>
</tr>
</thead>
</table>
| ![Configuration](image1.png) | **Magnitude:** Zero
Sign: –
Trend: Increasing | None of the force is acting perpendicular to the magnetic field, so zero electric current is generated. |
| ![Configuration](image2.png) | **Magnitude:** Moderate
Sign: Positive
Trend: Increasing | In the first half of the cycle, electric current flows from positive voltage to negative voltage, which is the positive direction, thus the voltage is positive. Some of the force is acting perpendicular to the magnetic field, so moderate electric current is generated. |
| ![Configuration](image3.png) | **Magnitude:** Maximum
Sign: Positive
Trend: Turning point | All of the force is acting perpendicular to the magnetic field, so maximum electric current is generated. |
Table 6.3: Operation of a simple AC electric generator (Continued)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Electric Current and Voltage</th>
<th>Comments</th>
</tr>
</thead>
</table>
| ![Configuration Image] | **Magnitude:** Moderate
Sign: Positive
Trend: Decreasing
Voltage: Decreasing | Some of the force is acting perpendicular to the magnetic field, so moderate electric current is generated. |
| ![Configuration Image] | **Magnitude:** Zero
Sign: –
Trend: Decreasing
Voltage: Decreasing | None of the force is acting perpendicular to the magnetic field, so zero electric current is generated. |
| ![Configuration Image] | **Magnitude:** Moderate
Sign: Negative
Trend: Decreasing
Voltage: Decreasing | In the second half of the cycle, electric current flows from negative voltage to positive voltage, which is the negative direction, thus the voltage is negative. Some of the force is acting perpendicular to the magnetic field, so moderate electric current is generated. |
Table 6.3: Operation of a simple AC electric generator (Continued)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Electric Current and Voltage</th>
<th>Comments</th>
</tr>
</thead>
</table>
| ![Diagram](image1) | **Magnitude:** Maximum
Sign: Negative
Trend: Turning point
Voltage
Time | All of the force is acting perpendicular to the magnetic field, so maximum electric current is generated. |
| ![Diagram](image2) | **Magnitude:** Moderate
Sign: Negative
Trend: Increasing
Voltage
Time | Some of the force is acting perpendicular to the magnetic field, so moderate electric current is generated. |
| ![Diagram](image3) | **Magnitude:** Zero
Sign: –
Trend: Increasing
Voltage
Time | None of the force is acting perpendicular to the magnetic field, so zero electric current is generated. |

Source: Adapted from Wolfe, J. (n.d.) by TNEP

Key References *(Alphabetical Order)*

